Configuration (dqa.configuration
)#
- class dqa.configuration.configuration.Algorithm(the_class: type, parameters: Dict[str, Any], meta_parameters: Dict[str, Any])#
Represents a (machine learning) algorithm in the system.
There can be one global object or one object for each machine.
- Parameters:
the_class (type) – The class that performs the algorithm. This must implement a fit(X, y) and a predict(X) method in the scikit-learn style.
parameters (dict) – The constructor parameters to create the object of the_class.
meta_parameters (dict) – Meta parameters for the algorithm object. Most importantly, a ‘Filename’ entry indicates that the algorithm should be loaded from a pickled file. ‘PerMachine’ indicates that one instance of the algorithm should be created for each machine.
Methods
fit
fit2
generate_object
get_object_for_machine
load_objects_from_file
predict
save
setup_new_objects
- fit(machine_name: str, X, y, sample_weights=None, **kwargs)#
- fit2(algo_object, X, y, sample_weights=None, **kwargs)#
- generate_object() Any #
- get_object_for_machine(machine_name: str) Any #
- load_objects_from_file()#
- predict(machine_name: str, X, **kwargs)#
- save(filename)#
- setup_new_objects()#
- class dqa.configuration.configuration.ConfigClass(the_class: type, parameters: Dict)#
Represents a class that is used in a configuration list, for example a task class.
- Parameters:
the_class (type) – The type (class) to be referred to, of which objects are generated.
parameters (dict) – General settings to configure this class. This will be assigned as a static variable of the class.
Methods
find_key_for_class
(class_dict, the_class)Given a class, find the corresponding identifier :param class_dict: The dictionary mapping identifiers to classes.
load_from_file
(file_path)Loads config classes from a json definition file.
- static find_key_for_class(class_dict: Dict[str, Any], the_class: type) str #
Given a class, find the corresponding identifier :param class_dict: The dictionary mapping identifiers to classes. :param the_class: The class to search for. :return: The identifier of the class.
- static load_from_file(file_path: str) Dict[str, Any] #
Loads config classes from a json definition file. :param file_path: The path to the file. :return: A dictionary mapping the identifiers to the corresponding ConfigClass objects.
- parameters: Dict[str, Any]#
- the_class: type#
- class dqa.configuration.configuration.ConfigCollection(class_dict: Dict[str, ConfigClass], meta_parameter_names: List[str])#
Implements a collection (list or dictionary) of ConfigClass objects. Such collections are usually loaded by a (part of a ) JSON configuration file.
Methods
init_entry
(config)Initializes a single entry in the collection from a JSON configuration.
init_entry_collection
(config)Initializes the collection from a config object.
When init_entry_collection() has been called, this method creates the final objects, i.e. it creates instances of the Python classes associated with the ConfigClass objects loaded in the configuration.
add_resolving_parameters
copy_resolving_parameters
- add_resolving_parameters(additional_parameters)#
- class_dict: Dict[str, ConfigClass]#
- abstract copy_resolving_parameters(additional_parameters: Dict[str, Any])#
- entry_classes: Any#
- entry_parameters: Any#
- init_entry(config: Dict[str, Any])#
Initializes a single entry in the collection from a JSON configuration. :param config: The configuration, usually taken from a JSON file. :return: Tuple, containing the ConfigClass object, the constructor parameters, the meta parameters.
- abstract init_entry_collection(config)#
Initializes the collection from a config object. This generates the collection of the ConfigClass objects for the individual entries. However, it does not generate the final objects yet. :param config: The configuration of the collection, usually taken from a JSON file.
- abstract init_object_collection()#
When init_entry_collection() has been called, this method creates the final objects, i.e. it creates instances of the Python classes associated with the ConfigClass objects loaded in the configuration.
- meta_parameter_names: List[str]#
- meta_parameters: Any#
- objects: Any#
- resolving_parameters: Dict[str, Any]#
- class dqa.configuration.configuration.ConfigDict(class_dict: Dict[str, ConfigClass], meta_parameter_names: List[str])#
A specific implementation of the ConfigCollection class where the entries are stored in a dictionary. (For example the dictionary of algorithms).
Methods
init_entry
(config)Initializes a single entry in the collection from a JSON configuration.
init_entry_collection
(config)Initializes the collection from a config object.
When init_entry_collection() has been called, this method creates the final objects, i.e. it creates instances of the Python classes associated with the ConfigClass objects loaded in the configuration.
add_resolving_parameters
copy_resolving_parameters
- copy_resolving_parameters(additional_parameters: Dict[str, Any])#
- entry_classes: Dict[str, ConfigClass | None] | None#
- entry_parameters: Dict[str, Dict[str, Any]] | None#
- init_entry_collection(config: Dict[str, Dict])#
Initializes the collection from a config object. This generates the collection of the ConfigClass objects for the individual entries. However, it does not generate the final objects yet. :param config: The configuration of the collection, usually taken from a JSON file.
- init_object_collection()#
When init_entry_collection() has been called, this method creates the final objects, i.e. it creates instances of the Python classes associated with the ConfigClass objects loaded in the configuration.
- meta_parameters: Dict[str, Dict[str, Any]] | None#
- objects: Dict[str, T] | None#
- class dqa.configuration.configuration.ConfigList(class_dict: Dict[str, ConfigClass], meta_parameter_names: List[str])#
A specific implementation of the ConfigCollection class where the entries are stored in a list. (For example Task lists).
Methods
init_entry
(config)Initializes a single entry in the collection from a JSON configuration.
init_entry_collection
(config)Initializes the collection from a config object.
When init_entry_collection() has been called, this method creates the final objects, i.e. it creates instances of the Python classes associated with the ConfigClass objects loaded in the configuration.
add_resolving_parameters
copy_resolving_parameters
- copy_resolving_parameters(additional_parameters: Dict[str, Any])#
- entry_classes: List[ConfigClass | None] | None#
- entry_parameters: List[Dict[str, Any]] | None#
- init_entry_collection(config: List[Dict])#
Initializes the collection from a config object. This generates the collection of the ConfigClass objects for the individual entries. However, it does not generate the final objects yet. :param config: The configuration of the collection, usually taken from a JSON file.
- init_object_collection()#
When init_entry_collection() has been called, this method creates the final objects, i.e. it creates instances of the Python classes associated with the ConfigClass objects loaded in the configuration.
- meta_parameters: List[Dict[str, Any]] | None#
- objects: List[T] | None#
- class dqa.configuration.configuration.ConfigSystem#
Representation of an entire DQA config.
The config contains different aspects (e.g. task lists and algorithms) that are represented by ConfigDict/ConfigList objects.
- Attributes:
- algorithms_classes
- tasks_classes
Methods
load_algorithm_class
load_algorithm_classes
load_algorithms
load_classes
load_task_class
load_task_classes
load_task_lists
load_task_module
process_config
process_config_file
process_includes
register_parameter_objects
remove_comments
- algorithms_classes = None#
- includes: Dict[str, Any]#
- static load_algorithm_class(the_class: type, parameters: dict | None = None)#
- static load_algorithm_classes(filename: str)#
- load_algorithms(config_algos: Dict[str, Dict])#
- static load_classes()#
- static load_task_class(the_class: type, parameters: dict | None = None)#
- static load_task_classes(filename: str)#
- load_task_lists(config_task_lists: Dict[str, List[Dict[str, Any]]])#
- static load_task_module(module, parameters: dict | None = None)#
- model_export: Dict[str, Any] | None#
- preprocessor: ConfigPreprocessor#
- process_config(config: Dict[str, Any], config_dir: str, parameters: Dict[str, Any] | None = None)#
- process_config_file(config_filename: str, config_dir: str | None = None, parameters: Dict[str, Any] | None = None)#
- process_includes(includes_config: List[Dict[str, Any]], config_dir: str)#
- register_parameter_objects(prefix: str, objects: Dict[str, Any])#
- static remove_comments(config: Any) Any #
- task_lists: Dict[str, ConfigList[Task]]#
- tasks_classes = None#
- class dqa.configuration.configuration.NestedTask(task_list: ConfigList[Task], parameters: Dict[str, Any] | None = None, batch_processing: bool = False, **kwargs)#
A task that consists of a nested list of more tasks.
- task_listConfigList[Task]
A loaded configuration of a task list to be executed inside the task.
- parametersdict, default=None
A dictionary of parameters passed to the configuration of the task list.
Methods
finish
()Can perform actions that are required to clean up after the task has finished, e.g. close network connections etc.
push_parameters_to_sub_tasks
(parameters)Copies the specified parameters to all entries in self.task_list of the class NestedTask.
in_out_default
input_output_dataset
input_output_machine
input_output_mode
input_output_name
log
modify_data_row
modify_dataset
modify_dataset_dict
modify_machine
modify_measurement
set_logging_level
transfer_metadata
- finish()#
Can perform actions that are required to clean up after the task has finished, e.g. close network connections etc.
- push_parameters_to_sub_tasks(parameters: Dict[str, Any])#
Copies the specified parameters to all entries in self.task_list of the class NestedTask.
- Parameters:
parameters – Dictionary of parameters.
- set_logging_level(level)#
- class dqa.configuration.preprocessor.ConfigPreprocessor(parameters: Dict[str, Any] | None = None)#
Methods
load_standard_functions
register_function
resolve
resolve_and_check
resolve_list_and_check
resolve_string_and_check
set_variable
- functions: Dict#
- load_standard_functions()#
- register_function(name: str, function_obj, unresolved_arguments: List[int] | None = None)#
- resolve(input_config: Any) Any #
- resolve_and_check(input_config: ~typing.Any) -> (typing.Any, <class 'bool'>, <class 'bool'>)#
- resolve_list_and_check(input_list: ~typing.List) -> (typing.Any, typing.List[bool], <class 'bool'>)#
- resolve_string_and_check(input_str: str) -> (typing.Any, <class 'bool'>, <class 'bool'>)#
- set_variable(name: str, value: Any)#
- variables: Dict[str, Any]#
- exception dqa.configuration.preprocessor.RemoveEntry#
- dqa.configuration.preprocessor.preprocessor_add(pp, *args) Any #
- dqa.configuration.preprocessor.preprocessor_append(pp, base_list: List[Any], *args) List[Any] #
- dqa.configuration.preprocessor.preprocessor_datetime(pp, time_string: str, format: str) datetime64 #
- dqa.configuration.preprocessor.preprocessor_for(pp, expression: Any, iteration_list: List[Any], variable: str = 'X') List[str] #
- dqa.configuration.preprocessor.preprocessor_if(pp, condition: bool, expression: Any) Any #
- dqa.configuration.preprocessor.preprocessor_range(pp, p1: int, p2: int | None = None, p3: int | None = None) List[int] #
- dqa.configuration.preprocessor.preprocessor_timestamp(pp, time_string: str, format: str) float #