Machine learning interface tasks (dqa.tasks.ml)#

BalanceClassificationTrainingSet(label_name, ...)

Resamples a training and label data set such that there is an equal number of samples for each label value.

CategoryToOneHot(**kwargs)

Converts index labels into one-hot vectors.

LabelExtractionTask(main_dataset, label_dataset)

Abstract basis class for a task that extracts labels from a separate dataset into one or multiple main datasets.

LabelsByRanges(main_dataset, label_dataset, ...)

Creates a label metadata key from a table in another dataset specifying a range for each label.

Prediction(algo[, direct_params])

Performs a prediction with a machine learning model.

RandomizeAndSubsample([ratio, size])

Randomly subsamples data to a specified relative ratio or absolute size.

TrainTestSplit(input_name, output_name[, ...])

Splits data into training and test data.

Training(input_name, labels_name, algo[, ...])

Performs training with a machine learning model.

UniqueLabels(default_value, **kwargs)

Transforms a 2-dimensional labels array with multiple values in each row (for example from taking windows of a label time series) into a 1-dimensional label vector.