dqa.tasks.time_series.SplitByGaps#

class dqa.tasks.time_series.SplitByGaps(gap_dataset: str, gap_beginning: str, gap_end: str, timestamp_name: str, gap_measurement: int = 0, **kwargs)#

Splits up one measurement with time series into multiple ones by an additional list of gaps.

The list of gaps is given by the data rows gap_beginning and gap_end (beginning and end timestamps) contained in the measurement with index gap_measurement in gap_machine in gap_dataset. All input data rows are split up by these gaps using the timestamp given in data row timestamp_name. Entries in the input data whose timestamps are inside a gap are dropped.

Parameters:
  • gap_dataset (str) – Name of the dataset containing the gap data.

  • gap_beginning (str) – Name of the data row containing the start timestamps of the gaps.

  • gap_end (str) – Name of the data row containing the end timestamps of the gaps.

  • timestamp_name (str) – Name of the data row in the input dataset containing the timestamps.

  • gap_measurement (int, default=0) – Index of the measurement containing the gap data.

Methods

finish()

Can perform actions that are required to clean up after the task has finished, e.g. close network connections etc.

get_gaps(gap_measurement)

Extracts the list of gaps from the containing measurement.

split_indices_by_gaps(machine_name, timestamps)

Splits up the indices for a timestamp array according to the list of gaps.

extract_gaps_total

in_out_default

input_output_dataset

input_output_machine

input_output_mode

input_output_name

log

modify_data_row

modify_dataset

modify_dataset_dict

modify_machine

modify_measurement

set_logging_level

transfer_metadata